If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-24X-90=0
a = 1; b = -24; c = -90;
Δ = b2-4ac
Δ = -242-4·1·(-90)
Δ = 936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{936}=\sqrt{36*26}=\sqrt{36}*\sqrt{26}=6\sqrt{26}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{26}}{2*1}=\frac{24-6\sqrt{26}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{26}}{2*1}=\frac{24+6\sqrt{26}}{2} $
| 7/9*x=63 | | 1-2y/5=9/5-y/5+3/5 | | 0.9848=x/2.5 | | (X-5)(x-7)(x+4)(x+6)=504 | | X/3-1/5=x/5+1/3 | | 7x/2+2x=12-x | | 6m-9=6m+16 | | 9x^2+3=147x | | 9x^2+3-147x=0 | | 2/3x+8=1/6 | | 6(x-5)=-7(2x+4) | | 5(4a-28)=5(2a-13) | | 2x-2x=-8 | | 12y-7=2y+3 | | 9x-(5x+1)-{2+8x-(7x-5)}+9x=0 | | 100÷x=4 | | 100÷z=4 | | 12-8n=4 | | x/5-22=2x+4 | | 3y+3=96 | | 2x-7=8x+14 | | h-|-8|=15 | | 2x−7=4 | | 4(x-7)=6x | | w(3w-1)=44 | | -12=1/2x+x | | 7^x=0.49 | | x=10=2(x+8) | | (7/2)w-5=-6w+3 | | 9p^2-30p+23=0 | | 13x+15=17x | | 0.6+0.5y-1=y=0.5 |